Modular Analog Synthesizers home page
Fine modular analog synthesizers featuring classic styling and world-class customer service

Q960 Sequential Controller

return to modulesReturn to Modules
Q960 Sequential Controller

The Q960 Sequential Controller is a recreation of Bob Moog's famous 960 module. Built using modern components yet retaining the 960's unique functionality including the highly sought-after skip function, 3rd row timing control and trigger in/out for each stage.

The Q960 is an 8 stage, 3 row sequencer with an internal oscillator. Each row can control any voltage-controlled module such as an oscillator or filter. A 9th stage provides a place for the sequencer to stop. A lamp for each stage indicates when it's active.

The front panel is divided into 3 sections: Oscillator, Stages, and Output. Each stage has 3 knobs which determine the voltage at the 3 row outputs (A, B, C). The row outputs can be scaled using the 'X' switches (X1, X2, X4). A mode switch for each stage selects Skip, Normal, or Stop. A trigger (Gate) input signal will select a particular stage, as does the manual push button. A trigger (Gate) output signal is available when a stage is active.

The Q960 Sequencer faithfully recreates the original Moog 960 panel layout and functionality, but the circuitry has been redone.

The internal oscillator has 6 ranges and a variable control. A lamp indicates when the oscillator is on. Both manual buttons and Triggers (Gates) can turn the oscillator On/Off. An external 1V/Octave voltage control allows the Q960 to be used as a programmable waveform oscillator. An external shift input and manual shift button provide additional control of stage activation.

Learn about gates and triggers here

Compare the Q119 and Q960 Sequencers

$880.00 USD
  • OA Wrote: Thanks for building this great, rock solid system and especially the Q960 sequencer with the Q963 trigger bus and the Q962 sequential switch. It's a source of endless ideas and fun. Perfect in combination with other synths.

The Basics
The Q960 is functionally equivalent to the Moog 960 and any Moog documentation will apply. The Q960 however, has a few features that go beyond the Moog module such as the optional Reset mode, and intuitive cross-trigger patching.

For starters, you may want to read over the original Moog 960 information at Roger Luther's Moog Archives From the menu on the left, select INSTRUMENTS, then select MODULES. Don't forget to send a note to Roger Luther for his great website.

Triggers and Gates
In the Moog language, Triggers are what we call Gates today. Triggers and gates are On/Off signals that indicate an on/off event such as a keypress or stage on. Learn more about gates and triggers in this article.

Controlling Envelope Generators
Normally, the oscillator output of the Q960 is used to start an envelope generator on every stage activation. The oscillator output is fixed at 90% duty cycle (90% on, 10% off). You can also start Envelope generators using the individual stage trigger outputs. These trigger outputs are on for the entire time that a stage is on (100% duty cycle). This means that 2 adjacent stages firing the same envelope generator will create a single longer trigger when mixed together.

Combining Triggers with the Q961 Interface
Use the Q961 Interface to combine up to 12 triggers. Six trigger inputs are simply mixed together, and six have an adjustable width. The adjustable width inputs allow adjacent triggers to create independent trigger pulses.

Row Control of Stage Timing
The timing of each stage can be controlled by the 3rd row of knobs (Row C) by simply switching the '3RD ROW TIMING' rocker switch. This routes the voltage from the 3rd row back to the oscillators control voltage input. The oscillator's extra control voltage input can be used in addition to this. The X switch scales the effect. Other rows can be used to control timing by simply patching the row output back to the oscillator's control voltage input.

When the X switch is set at X1, each knob produces 0-2 volts. Since the oscillator responds to the volt per octave standard, setting the knob to the zero position causes no speed change, setting the knob to the 1 position doubles the speed of that stage, and setting the knob to the 2 position quadruples the speed of that stage. This makes timing settings easy to program.

Cross-Triggering is the method of patching a trigger output from one stage to the trigger input of another. Exotic, non-sequential patterns can be created using multiple patches. Patches can be enabled or disabled using the Q962's switch section to create patterns that change from cycle to cycle.

Cross-Triggering carries with it unexpected results at times. For example, patching a trigger output to a trigger input that has the mode switch set to skip, causes the sequencer to reset to stage 1. This is because triggering is not a shifting operation and a stage can not be selected via a shift pulse unless the previous stage is active. A special circuit inside the Q960 resets to stage 1 when no stages are active.

In the same situation, the Moog 960 would cause multiple stages to come on at the same time resulting in useless outputs and sequences. The Q960 varies from the Moog in this regard and the results are fun and powerful.

It is possible to intentionally patch triggers so that multiple stages come on at the same time. The result is that the voltages from each active stage is summed at the output stage.

24-Stage Operation using a Q962
One of the primary purposes of the Q962 sequential switch is to alternately select between the 3 row outputs of the Q960 to effectively create a 24 stage sequence. Patch the trigger output from stage 1 into the shift input of the Q962. Patch 2 or 3 rows from the Q960 to the Q962's switch inputs. Now the Q962's output will be the 24-stage sequencer output.

Multi-Sequencer Triggering
Of course, you can patch trigger outputs and inputs between multiple sequencers to achieve truely complex and bizarre sequences.

Using the Q128 Switch to Select Cross Triggers
Use the Q128 Switch to select various triggering under voltage control. The Q128 can be controlled from any source including a keyboard, another sequencer, a Q962 switch, an oscillator, etc. The results can be amazing.

Pseudo-Random Stage Selection
Since the Q960 is a shifting style sequencer, the only way to get true random stage selection is to have a source of multiple random triggers. A similar effect can be achieved by patching the output of a Q110 Noise module into the Q960 Shift input. The result is actually random shift timing but it acts similar to random stage selection if tuned correctly.

  • Panel Size: Octal width 17"w x 8.75"h.
  • Trigger, Shift, Control Input Signals: Fast rising 0-3 volts minimum, active high.
  • Output Voltage Levels: 0-8V.
  • Internal Oscillator: .1 to 2Khz.+, 1V/Octave Response
  • External Oscillator Speed: 2Khz maximum.
  • Power: +15V@120ma, -15V@30ma, +5@5ma.
  • GS Wrote: Three years ago, I ordered a full Q960 and other modules to conduct and improve the capacity of my minimoogs - the result is perfect.

Reset Feature

This feature use to be an option, now every Q960 includes it. The Q960RF Reset Feature adds a new position to the Q960's mode switch that provides a real-time Reset position. The Reset mode position is unmarked, one click beyond the Stop setting, and causes the sequencer to reset to stage 1 when selected. The results are very musical when played during a sequence along with the Skip feature.

Q960 Internal Workings & Behavior

This is a partial list of things that the Q960 does that may not seem logical.

How the Q960 works
It's important to understand how the Q960 works internally to understand what it's doing.

The Q960 is a 9 stage shift register. Each stage is linked to the next like a chain. Stage #9 is linked back to stage #1. Each stage is either ON or OFF.

Each time a shift occurs, the state of each stage is shifted forward and the last stage is sent to stage #1. In other words: a circular rotation.

Shifting can come from 3 different sources: Internal oscillator, Shift input, Shift button. You can use all 3 of these at the same time if you want. For example: patch a pulse from a Q106 oscillator into the shift input at the same time the Q960's internal oscillator is going to produce unusual patterns.

If a stage is in skip mode, that stage is removed from the chain and the previous stage is linked around it directly to the next stage. So, no matter what state a skipped stage is in, it will go OFF on a shift, and its state will not be shifted to the next stage.

There is a special circuit in the Q960 that sets stage #1 if all stages are off. This accounts for some of the anomalies where stage #1 gets set. For example, if a stage that is ON is also in skip mode, then the Q960 will reset to stage #1 upon the next shift.

Reseting to skipped stage #1
This happens if one of the stages is in Reset mode, assuming you have this feature, and stage #1 is in skip mode. When reset happens, stage #1 is set, and no further shifting occurs since there are no ON stages in the chain.

Triggering a stage that is skipped
If you ever set a stage with a trigger input signal and that stage is in skip mode, that stage will be set, but when the next shift occurs, a reset to stage #1 will occur. This is because of the circut that sets stage #1 if all stages are off, and shifting from a skipped stage results in all stages off.

Multiple stages on
There are conditions that occur where multiple stages come ON. This can happen when a trigger output is patched to multiple trigger inputs and in other cases. This is usually not useful because the output voltages are summed.

  • D Wrote: I recently ordered a set of Q960 sequencer/Q962 switch/Q963 bus [modules]. It is, I think, my fourth or fifth order with you folks. First I must say again, that you are the most thorough and efficient boutique synth manufacturers in the world. Trust me, I have dealt with the majority of them! Your company is the absolute measuring stick for service and quality.

Copyright Facebook group Google Plus group
Email web page
Tweet about
print Logo
To Top